110 research outputs found

    Impact of neutron star oscillations on the accelerating electric field in the polar cap of pulsar: or could we see oscillations of the neutron star after the glitch in pulsar?

    Full text link
    Pulsar "standard model", that considers a pulsar as a rotating magnetized conducting sphere surrounded by plasma, is generalized to the case of oscillating star. We developed an algorithm for calculation of the Goldreich-Julian charge density for this case. We consider distortion of the accelerating zone in the polar cap of pulsar by neutron star oscillations. It is shown that for oscillation modes with high harmonic numbers (l,m) changes in the Goldreich-Julian charge density caused by pulsations of neutron star could lead to significant altering of an accelerating electric field in the polar cap of pulsar. In the moderately optimistic scenario, that assumes excitation of the neutron star oscillations by glitches, it could be possible to detect altering of the pulsar radioemission due to modulation of the accelerating field.Comment: 7 pages, 8 figures. Presented at the conference "Isolated Neutron Stars: from the Interior to the Surface", London, April 24-28, 2006; to appear in Astrophysics and Space Scienc

    Indirect RKKY interaction in any dimensionality

    Full text link
    We present an analytical method which enables one to find the exact spatial dependence of the indirect RKKY interaction between the localized moments via the conduction electrons for the arbitrary dimensionality nn. The corresponding momentum dependence of the Lindhard function is exactly found for any nn as well. Demonstrating the capability of the method we find the RKKY interaction in a system of metallic layers weakly hybridized to each other. Along with usual 2kF2k_F in-plane oscillations the RKKY interaction has the sign-reversal character in a direction perpendicular to layers, thus favoring the antiferromagnetic type of layers' stacking.Comment: 3 pages, REVTEX, accepted to Phys.Rev.

    Tkachenko waves, glitches and precession in neutron star

    Full text link
    Here I discuss possible relations between free precession of neutron stars, Tkachenko waves inside them and glitches. I note that the proposed precession period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is consistent with the period of Tkachenko waves for the spin period 8.4s. Based on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al. 2007), I propose a simple model, in which long period precession is powered by Tkachenko waves generated by a glitch. The period of free precession, determined by a NS oblateness, should be equal to the standing Tkachenko wave period for effective energy transfer from the standing wave to the precession motion. A similar scenario can be applicable also in the case of the PSR B1828-11.Comment: 6 pages, no figures, accepted to Ap&S

    Recent glitches detected in the Crab pulsar

    Full text link
    From 2000 to 2010, monitoring of radio emission from the Crab pulsar at Xinjiang Observatory detected a total of nine glitches. The occurrence of glitches appears to be a random process as described by previous researches. A persistent change in pulse frequency and pulse frequency derivative after each glitch was found. There is no obvious correlation between glitch sizes and the time since last glitch. For these glitches ΔΜp\Delta\nu_{p} and ΔΜ˙p\Delta\dot{\nu}_{p} span two orders of magnitude. The pulsar suffered the largest frequency jump ever seen on MJD 53067.1. The size of the glitch is ∌\sim 6.8 ×10−6\times 10^{-6} Hz, ∌\sim 3.5 times that of the glitch occured in 1989 glitch, with a very large permanent changes in frequency and pulse frequency derivative and followed by a decay with time constant ∌\sim 21 days. The braking index presents significant changes. We attribute this variation to a varying particle wind strength which may be caused by glitch activities. We discuss the properties of detected glitches in Crab pulsar and compare them with glitches in the Vela pulsar.Comment: Accepted for publication in Astrophysics & Space Scienc

    RKKY interaction in the nearly-nested Fermi liquid

    Full text link
    We present the results of analytical evaluation of the indirect RKKY interaction in a layered metal with nearly nested (almost squared) Fermi surface. The final expressions are obtained in closed form as a combination of Bessel functions. We discuss the notion of the ``2k_F'' oscillations and show that they occur as the far asymptote of our expressions. We show the existence of the intermediate asymptote of the interaction which is of the sign-reversal antiferromagnetic type and is the only term surviving in the limit of exact nesting. A good accordance of our analytical formulas with numerical findings is demonstrated until the interatomic distances. The obtained expressions for the Green's functions extend the previous analytical results into the region of intermediate distances as well.Comment: 9 pages, REVTEX, 3 .eps figures, to appear in PRB 1 Oct 199

    Force-free magnetosphere of an aligned rotator with differential rotation of open magnetic field lines

    Full text link
    Here we briefly report on results of self-consistent numerical modeling of a differentially rotating force-free magnetosphere of an aligned rotator. We show that differential rotation of the open field line zone is significant for adjusting of the global structure of the magnetosphere to the current density flowing through the polar cap cascades. We argue that for most pulsars stationary cascades in the polar cap can not support stationary force-free configurations of the magnetosphere.Comment: 5 pages, 4 figures. Presented at the conference "Isolated Neutron Stars: from the Interior to the Surface", London, April 24-28, 2006; to appear in Astrophysics and Space Science. Significantly revised version, a mistake found by ourselfs in the numerical code was corrected, all presented results are obtained with the correct version of the cod

    Causality and the speed of sound

    Get PDF
    A usual causal requirement on a viable theory of matter is that the speed of sound be at most the speed of light. In view of various recent papers querying this limit, the question is revisited here. We point to various issues confronting theories that violate the usual constraint.Comment: v2: additional discussion on models that appear to have superluminal signal speeds; version to appear in GR

    Self-trapping of strong electromagnetic beams in relativistic plasmas

    Full text link
    Interaction of an intense electromagnetic (EM) beam with hot relativistic plasma is investigated. It is shown that the thermal pressure brings about a fundamental change in the dynamics - localized, high amplitude, EM field structures, not accessible to a cold (but relativisic) plasma, can now be formed under well- defined conditions. Examples of the trapping of EM beams in self-guiding regimes to form stable 2D solitonic structures in a pure e-p plasma are worked out.Comment: 9 pages, 6 figure

    The r-modes in accreting neutron stars with magneto-viscous boundary layers

    Full text link
    We explore the dynamics of the r-modes in accreting neutron stars in two ways. First, we explore how dissipation in the magneto-viscous boundary layer (MVBL) at the crust-core interface governs the damping of r-mode perturbations in the fluid interior. Two models are considered: one assuming an ordinary-fluid interior, the other taking the core to consist of superfluid neutrons, type II superconducting protons, and normal electrons. We show, within our approximations, that no solution to the magnetohydrodynamic equations exists in the superfluid model when both the neutron and proton vortices are pinned. However, if just one species of vortex is pinned, we can find solutions. When the neutron vortices are pinned and the proton vortices are unpinned there is much more dissipation than in the ordinary-fluid model, unless the pinning is weak. When the proton vortices are pinned and the neutron vortices are unpinned the dissipation is comparable or slightly less than that for the ordinary-fluid model, even when the pinning is strong. We also find in the superfluid model that relatively weak radial magnetic fields ~ 10^9 G (10^8 K / T)^2 greatly affect the MVBL, though the effects of mutual friction tend to counteract the magnetic effects. Second, we evolve our two models in time, accounting for accretion, and explore how the magnetic field strength, the r-mode saturation amplitude, and the accretion rate affect the cyclic evolution of these stars. If the r-modes control the spin cycles of accreting neutron stars we find that magnetic fields can affect the clustering of the spin frequencies of low mass x-ray binaries (LMXBs) and the fraction of these that are currently emitting gravitational waves.Comment: 19 pages, 8 eps figures, RevTeX; corrected minor typos and added a referenc

    Spectral properties of the one-dimensional two-channel Kondo lattice model

    Full text link
    We have studied the energy spectrum of a one-dimensional Kondo lattice, where the localized magnetic moments have SU(N) symmetry and two channels of conduction electrons are present. At half filling, the system is shown to exist in two phases: one dominated by RKKY-exchange interaction effects, and the other by Kondo screening. A quantum phase transition point separates these two regimes at temperature T=0T = 0. The Kondo-dominated phase is shown to possess soft modes, with spectral gaps much smaller than the Kondo temperature.Comment: 4 pages + 2 figures. Submitted for publicatio
    • 

    corecore